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Summary. A simple, mild, and high yielding procedure for the halogenation of allylic and benzylic
alcohols using a combination of SOCl,, benzotriazole, and potassium halides in DMF is described. The
effectiveness of the protocol is manifested in its selectivity towards allylic and benzylic alcohols
whereas other simple alcohols such as primary, secondary, and tertiary are found to be unreactive.

Keywords. Alcohols; Halogenation; Organic fluorides; Bromides; Iodides.

Introduction

Organic halides are indispensable intermediates in organic synthesis and their
transformations to useful compounds are well documented [1]. Both organic bro-
mides and iodides are often used in the carbon—carbon bond formation via radical
or substitution reactions. In addition, they serve as intermediates in a wide variety
of reactions and rearrangements. Thus, the conversion of alcohols into the corre-
sponding halides is a very important transformation. The most common precursors
to alkyl halides are alcohols and therefore the conversion of alcohols into halides is
a frequently encountered transformation in organic synthesis [2]. Among organic
halides, iodides are the most reactive, bromides are the moderate reactive, chlo-
rides are less reactive, fluorides are the least reactive, and in some cases, 1odides
show unique reactivity [3].

As the C-C bond-forming radical reactions of halides are important [4], we
were in need of a variety of organic halides. A number of methods for the trans-
formation of alcohols into organic iodides using a variety of reagent systems
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i) SOCI,, benzotriazole, CHoCly
ROH » R—X
1 i) KX, DMF 2

R = allyl, benzyl, X=1, Br, F

Scheme 1

such as BF;-E1,O/Nal [5], P4~L, [6], C1,SO-DMF/KI [7], MgL, [8], HI [9],
CISiMe;/Nal [10], gas phase reactions using KI in the presence of a phase transfer
catalysts [11], and others [12] are available. Organic bromides have been prepared
from the corresponding alcohols using various reagents such as HBr/AcOH [13],
triphenylphosphine—CBr,/pyridine [14], TPP-NBS [15], N,N-carbonyldiimidazole-
allyl bromide [16], trifluoroacetanhydride-LiBr [17], tetramethyl-A-bromo-
enamine [18], and others [11]. However, very few methods have been reported for
the direct conversion of alcohols into the corresponding organic fluorides and some
of the reagents known for this transformation are difluorotriphenylphosphorane
[19], diethylamino sulfurtrifluoride [20], tetraalkylammonium fluoride [21], and
HF /pyridine [22]. The reported procedures for the preparation of organic halides
suffer from one or the other drawbacks, such as low yields, long reaction times, use
of expensive reagents, drastic reaction conditions, and tedious work-up procedures.
We now investigated a novel halogenation method using the inexpensive, safe, and
easily available reagent SOCl,—benzotriazole [23], and KI, KBr, or KF in DMF,
which transforms allylic and benzylic alcohols into the corresponding organic
iodides, bromides, and fluorides (Scheme 1).

Results and Discussion

We first tried this reagent system on benzyl alcohol, which afforded benzyl iodide
in 97% within 10 minutes at room temperature (entry 1). This reagent system also
worked well for the preparation of benzyl bromides and fluorides (entries 2-3).
Subsequent scrutiny showed that this reagent system is suitable for a variety of
allylic and benzylic alcohols and culminated into a simple and mild procedure
for the conversion of alcohols into organic iodides, bromides, and fluorides (entries
4-24). The methodology worked well with ortho, meta, para, and multi-substituted
benzylic systems (entries 4—24) containing electron-donating or -withdrawing sub-
stituents furnishing excellent yields of products. It also worked well for allylic
alcohols (entries 25-27) giving high yields of the corresponding iodides and bro-
mides, whereas fluorides were obtained in poor yields. It was observed that the
iodination and bromination reactions were fast as compared to chlorination of
allylic and benzylic alcohols. It is important to note that though simple primary,
secondary, and tertiary alcohols remain unreacted (entries 34—45), homoallylic
secondary and tertiary alcohols (entries 28—33) underwent smooth halogenation
under these reaction conditions. Finally we tried a 20 mmol scale-up of the iodina-
tion reaction. Thus, 4-chlorobenzyl alcohol furnished the corresponding iodide in
almost quantitative yield (99%) after usual work-up.

Excellent selectivities were observed during inter- and intra-molecular com-
petition between benzylic and aliphatic alcohols. Thus, during intramolecular
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Table 1. Halogenation of alcohols using SOCl,, benzotriazole in CH,Cl,, and KI/KBr/KF in DMF
Entry  Substrate Product Time Yield®
min (h) %
1 Benzyl alcohol Benzyl iodide 10 97
2 Benzyl alcohol Benzyl bromide 30 99
3 Benzyl alcohol Benzyl fluoride (10) 82
4 4-Bromobenzyl alcohol 4-Bromobenzyl iodide 6 96
5 4-Bromobenzyl alcohol 4-Bromobenzyl bromide 13 90
6 4-Bromobenzyl alcohol 4-Bromobenzyl fluoride (10.5) 62
7 4-Chlorobenzyl alcohol 4-Chlorobenzyl iodide 5 99
8 4-Chlorobenzyl alcohol 4-Chlorobenzyl bromide 16 99
9 4-Chlorobenzyl alcohol 4-Chlorobenzyl fluoride (10) 70
10 2,4-Dichlorobenzyl alcohol 2,4-Dichlorobenzyl iodide 8 98
11 2,4-Dichlorobenzyl alcohol 2,4-Dichlorobenzyl bromide 5 91
12 2,4-Dichlorobenzyl alcohol 2,4-Dichlorobenzyl fluoride ©)] 71
13 4-Methoxybenzyl alcohol 4-Methoxybenzyl iodide 30 85
14 4-Methoxybenzyl alcohol 4-Methoxybenzyl bromide 50 79
15 4-Methoxybenzyl alcohol 4-Methoxybenzyl fluoride 12) 78
16 3,4-Methylenedioxybenzyl alcohol 3,4-Methylenedioxybenzyl iodide 6 96
17 3,4-Methylenedioxybenzyl alcohol 3,4-Methylenedioxybenzyl bromide 13 90
18 3,4-Methylenedioxybenzyl alcohol 3,4-Methylenedioxybenzyl fluoride (10.5) 70
19 6-Chloro-3,4-methylenedioxybenzyl alcohol  6-Chloro-3,4-methylenedioxybenzyl iodide 6 96
20 6-Chloro-3,4-methylenedioxybenzyl alcohol  6-Chloro-3,4-methylenedioxybenzyl bromide 13 90
21 6-Chloro-3,4-methylenedioxybenzyl alcohol  6-Chloro-3,4-methylenedioxybenzyl fluoride (10.5) 62
22 4-Nitrobenzyl alcohol 4-Nitrobenzyl iodide 45 97
23 4-Nitrobenzyl alcohol 4-Nitrobenzyl bromide 50 91
24 4-Nitrobenzyl alcohol 4-Nitrobenzyl fluoride (11 63
25 Cinnamy] alcohol Cinnamyl iodide (1) 98
26 Cinnamy] alcohol Cinnamyl bromide “) 92
27 Cinnamyl alcohol Cinnamyl fluoride ®) 25
28 4-(4-Chlorophenyl)-4-hydroxy-1-butene 4-(4-Chlorophenyl)-4-iodo-1-butene 6) 84
29 4-(4-Chlorophenyl)-4-hydroxy-1-butene 4-(4-Chlorophenyl)-4-bromo-1-butene ®) 81
30 4-(4-Chlorophenyl)-4-hydroxy-1-butene 4-(4-Chlorophenyl)-4-fluoro-1-butene (18) 23
31 4-(4-Chlorophenyl)-4-hydroxy-1-pentene 4-(4-Chlorophenyl)-4-iodo-1-pentene ®) 82
32 4-(4-Chlorophenyl)-4-hydroxy-1-pentene 4-(4-Chlorophenyl)-4-bromo-1-pentene arn) 80
33 4-(4-Chlorophenyl)-4-hydroxy-1-pentene 4-(4-Chlorophenyl)-4-fluoro-1-pentene (24) 00
34 1-Octanol 1-Iodo octane (24) 00
35 1-Octanol 1-Bromo octane 24) 00
36 1-Octanol 1-Fluoro octane 24) 00
37 2-Isopropyl-5-methylcyclohexanol 2-Isopropyl-5-methyl iodocyclohexane (24) 00
38 2-Isopropyl-5-methylcyclohexanol 2-Isopropyl-5-methyl bromocyclohexane (24) 00
39 2-Isopropyl-5-methylcyclohexanol 2-Isopropyl-5-methyl fluorocyclohexane (24) 00
40 Triphenylmethanol Triphenyliodomethane (24) 00
41 Triphenylmethanol Triphenylbromomethane (24) 00
42 Triphenylmethanol Triphenylfluoromethane (24) 00

(continued)
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Table 1 (continued)

Entry Substrate Product Time Yield*
min (h) %

43 1,10-Didecanol 1,10-Diiododecane (24) 00

44 1,10-Didecanol 1,10-Dibromodecane 24) 00

45 1,10-Didecanol 1,10-Difluorodecane 24) 00

46 OH OH 25 90

HO |
47 4-Chlorobenzyl alcohol + 1-Hexanol 4-Chlorobenzyl iodide 4 1-Hexanol 5 85+97
48 Cinnamy] alcohol 4 Cyclohexanol Cinnamyl iodide + Cyclohexanol (1) 93 +98

* Yields of pure isolated products

competition (entry 46) benzylic alcohol selectively underwent iodination in the
presence of aliphatic primary alcohol. Similarly, when a equimolecular mixture
of 4-chlorobenzyl alcohol and l-hexanol (entry 47) is subjected to iodination,
selectively 4-chlorobenzyl alcohol underwent iodination in excellent yield whereas
1-hexanol remained unreacted. Selective iodination of cinnamyl alcohol in the
presence of cyclohexanol (entry 48) was also observed under these reaction con-
ditions. Recently, SOCl,—benzotriazole has been reported [23] as highly efficient
reagent for rapid conversion of alcohols into the corresponding chlorides. There-
fore, this procedure has been applied for the preparation of bromides, iodides, and
fluorides. The alcohols might be first converted into the corresponding chlorides,
which further underwent smooth bromination, iodination and flourination with
KBr, KI and KF involving SN, mechanism.

In conclusion, the present method shows unique selectivity and constitutes a
useful alternative to commonly accepted halogenation procedures of alcohols.
Moreover, the superiority and flexibility of the protocol lies in its ease of operation
and simplicity in work-up. Efficient, and high yielding procedure applicable to
allylic, benzylic, and homoallylic alcohols under mild conditions using the inex-
pensive and easily available reagent system make this simple protocol economi-
cally attractive. In addition, this method is amenable to scale-up.

Experimental

IR spectra were recorded on Bomem MB-104 FTIR spectrometer, whereas 'H NMR were scanned on a
AC-300F NMR (300 MHz) instrument using CDCl; as solvent and TMS as internal standard.

Typical Procedure

A mixture of 5 mmol of benzyl alcohol, 5.5 mmol of thionyl chloride, and 5 mmol of benzotriazole in
10cm® of CH,Cl, was stirred for 5 min. Then to this mixture 5 mmol of KI in 10 cm® of DMF were
added and stirring was continued until the reaction was complete (TLC, 10min). The product was
extracted with 3 x 10cm’ of ether, washed with 3 x 5cm® of aq. sodium thiosulfate (5%), and
3 x 10cm?® of H,0. The organic layer was dried with Na,SO, and the solvent removed under reduced
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pressure to furnish the crude product, which was purified by column chromatography (pet. ether). The
products were characterized by IR, NMR, elemental analysis, and comparison with authentic samples.
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